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Abstract
The stiffness and thermal expansion coefficient of ZrB2 are calculated within
the density functional theory formalism. The stiffness tensor obtained here
using the static finite strain technique is in good agreement with the results of
resonant ultrasonic measurements and points to a possible misinterpretation of
the experimentally obtained compression data. The methodology of evaluating
thermal expansion coefficients from molecular dynamics simulations for small
unit cells is validated for a number of systems: metals, semiconductors and
insulators.

1. Introduction

Transition metal diborides with the hexagonal AlB2 structure have attracted attention recently
for a number of reasons. Traditional applications of such materials are based on their
interesting combination of mechanical and transport properties: high melting temperature,
high stiffness and hardness, high thermal and electrical conductivity [1]. The knowledge of
such basic characteristics as stiffness and thermal expansion coefficient is obviously important
for applications of ZrB2 as a refractory material, either on its own or as a matrix of a reinforced
composite [2].

Recent advances in GaN optoelectronics have seen ZrB2 as a promising substrate for
epitaxial growth of high quality GaN films [3]. There is very little lattice mismatch between
the two materials (0.63%), and their thermal expansion coefficients are also quite similar [1].
The knowledge of elastic and thermal properties of single crystals of ZrB2 is important for
this application. Experimental studies of mechanical and thermodynamical properties of ZrB2

usually refer to polycrystalline samples, since single crystal growth is difficult in view of the
extremely high melting temperature of this compound (3060 ◦C). To date there exists only
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one set of experimental data on single crystal stiffness and thermal expansion coefficients of
ZrB2 [1]. In view of the experimental difficulties in accessing such properties the accuracy of
the reported stiffness, for example, can be questionable, as was the case for a similar compound,
TiB2 [4].

The discovery of superconductivity in a related compound, MgB2, has prompted a new
wave of research into the electronic and structural properties of other diborides, including
transition metal diborides. Mahmud et al [5] provided a review of the studies relevant to
the determination of ZrB2 properties; they also calculate the stiffness of ZrB2 using density
functional theory (DFT) as implemented in the linear combination of atomic orbitals (LCAO)
approach. The results of their LCAO-DFT study are in a generally good agreement with the
measured single crystal stiffness coefficients except for the C13 component. The deviation of
48 GPa, or 40%, in the C13 value is beyond the expected DFT error and indicates that either the
calculated or the experimental value is unreliable. The theoretical method chosen by Mahmud
et al [5] is quite likely to produce inaccurate results for a number of reasons:

(i) The combination of the local density approximation (LDA) correlation functional with the
gradient-corrected exchange functional as adopted by Mahmud et al [5] is inconsistent.

(ii) It is clear that geometry optimization is required for the structures generated with the
applied finite strains. Previous studies showed that an error of 2–5% can be assigned to
the neglect of this factor [4].

(iii) The finite strain technique based on the fitting of the total energy as a function of strain is
inherently less robust than the one based on the fitting of the stress tensor components (see
e.g. [4, 6]). The analysis of the second-order changes in the total energy under applied
strain requires very high convergence, which might be difficult to achieve for distortions
that lower the symmetry of the crystal.

One of the goals of the present paper is thus to investigate further the discrepancy between
the measured [1] and calculated [5] stiffness of ZrB2. In addition we would like to analyse
the difference of nearly 30% between the reported static [7] and dynamic [1] bulk modulus of
ZrB2. The static bulk modulus of 317 GPa as determined from the x-ray powder diffraction
analysis of compression up to 50 GPa is significantly higher than the value determined from
the resonant ultrasonic measurements, 245 GPa [1].

Another physical property of interest which we attempt to calculate from first principles
is the coefficient of thermal expansion, α. The approach we adopt here for the determination
of α is based on the ab initio molecular dynamics calculations using an NPT ensemble.
Intuitively one expects that a large supercell would be required to extract a reliable temperature
dependence of the lattice parameters in such simulations. We show below that for a number of
materials (metals, semiconductors, and insulators) the calculations on a conventional unit
cell are sufficiently accurate to reproduce the experimental findings qualitatively or even
quantitatively (to within 10%).

2. Computational details

ZrB2 crystallizes in the hexagonal P6/mmm structure with Z = 1; the Zr atom is on the 1a
Wyckoff site, and the B atoms are on the 2d Wyckoff site [8].

The quantum mechanical calculations described here are based on density functional
theory. We use and compare the accuracy of two schemes, the local density approximation,
LDA, and the PBE version of the generalized gradient approximation, GGA [9]. Ultrasoft
pseudopotentials were used with the maximum cut-off energy of the plane wave basis set of
300 eV. The pseudopotentials were generated using the same exchange–correlation functional
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Table 1. Equilibrium structure of ZrB2. Deviations from the experimental results are given in
brackets.

a (Å) c (Å) c/a Comment

3.168 3.523 1.112 Experiment [8]
3.183 (0.5%) 3.546 (0.6%) 1.114 LCAO [5]
3.197 (0.9%) 3.561 (1.1%) 1.114 TB-LMTO [17]
3.167 (−0.1%) 3.542 (0.5%) 1.119 Present work (PBE)
3.127 (−1.3%) 3.490 (−0.9%) 1.116 Present work (LDA)

in the atomic calculations as was used in the solid state calculations. Monkhorst–Pack
sampling [10] of the Brillouin zone was used, with distances between the grid points of about
0.03 Å−1, which corresponds to 95 k-points in the irreducible part of the Brillouin zone.

Stiffness was calculated using the finite strain technique. Two different strain patterns are
sufficient to extract all five independent stiffness coefficients of the ZrB2 structure via linear
fitting of the stress–strain dependence [4, 6]. We used four strain amplitudes for each of the
patterns, with a maximum applied strain of 0.3%. One of the strain patterns reduces the cell
symmetry; in this case atomic positions were optimized until the forces on atoms were below
0.002 eV Å−1.

NPT molecular dynamics calculations were carried out with a slightly smaller basis set
cut-off of 270 eV using two different setups: either the conventional cell with three atoms,or the
2×2×2 supercell with 24 atoms (P1 symmetry was used in each case). The equations of motion
were integrated using the velocity Verlet scheme [11]. We used the Andersen–Hoover barostat
in the form suggested by Hoover [12] coupled with the chain of Nosé–Hoover thermostats
approach proposed by Martyna et al [14] as implemented by Quigley and Probert [13]. A
timestep of 0.5 fs was used and each run was 10 ps long (20 000 steps), with only the last 5 ps
being used to determine ensemble averages. All calculations were carried out at atmospheric
pressure, P = 1 atm.

All calculations were performed using the CASTEP program [15, 16].

3. Results and discussion

The structural parameters of ZrB2 are presented in table 1. The lattice parameters agree
with experimental values to within 1%, which is typical for DFT calculations. The results
illustrate the well-known qualitative trend of the effect of exchange–correlation treatment on
crystal structures: the LDA description produces overbinding (too short interatomic distances),
while the GGA description produces underbinding (too long interatomic distances) [18]. The
earlier results [5] were obtained with the LDA description of the correlation functional and the
gradient-corrected description of the exchange term: this combination seems to generate the
typical GGA overbinding effect.

Information about the elastic properties of ZrB2 can be obtained computationally either
from the direct evaluation of the Ci j tensor using the finite strain technique, or from a
compressibility study. The latter route produces the bulk modulus, B , as well as the linear
compressibilities along the a and c directions based on the pressure dependence of the cell
volume and lattice parameters, respectively. The linear compressibilities βa = −d ln a/dP
and βc = −d ln c/dP are related to the elastic stiffness coefficients; see e.g. [4]:

βa = (C33 − C13)/D,

βc = (C11 + C12 − 2C13)/D
(1)

where D = (C11 + C12)C33 − 2(C13)
2.
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Table 2. Elastic stiffnesses Cij and bulk modulus B of ZrB2. The results obtained here using
PBE and LDA approximations are compared to earlier LCAO calculations and to experimental
values. The linear compressibilities βa and βc are either calculated from the single crystal elastic
stiffnesses or they are derived from the compressibility data. The pressure derivative of the bulk
modulus, B ′, is available only from the compressibility data. Cij and B are in GPa, βa and βc are
in TPa−1.

C11 C33 C12 C13 C44 B βa βc βa/βc B ′ Comment

581a 445a 55a 121a 240a 245a 1.28b 1.55b 0.82 — Experiment [1]
— — — — — 317(7) 0.87 1.05 0.83 — Experiment [7]c

596 482 48 169 240 272 1.24 1.21 1.02 — LCAO [5]
— — — — — 275 1.19 1.25 0.95 3.93 LCAO [5]c

— — — — — 195 — — — 1.94 TB-LMTO [17]c

564 436 52 118 256 237 1.32 1.58 0.84 — Present work (PBE)
— — — — — 238 1.31 1.57 0.83 3.84 Present work (PBE)c

606 477 54 134 281 259 1.23 1.41 0.87 — Present work (LDA)
— — — — — 260 1.22 1.41 0.87 3.85 Present work (LDA)c

a Extrapolated to 0 K by us based on the results from [1].
b Calculated using equation (1).
c Based on the compressibility data.

Ae summary of the present results is presented in table 2 in comparison with the
experimental data and with the earlier results of the LCAO study [5]. The third-order Birch–
Murnaghan equation of state [19] was used to analyse the calculated compression data. The
pressure dependence of the lattice parameters and thus of the cell volume was constructed by
carrying out geometry optimization under applied external pressure.

The main question addressed by the bulk modulus calculation is which experimental
value is more reliable: the equation of state result of 317(7) GPa [7], or the value of 245 GPa
derived from the ultrasonic measurements [1]. This discrepancy between the two sets of data
is unusually large to be ascribed to the difference between the static and dynamic moduli.
The results obtained here support the value of 245 GPa. The PBE calculation which slightly
overestimates the cell volume produces B = 237 GPa, while the LDA calculation that uses
slightly underestimated cell parameters gives a higher value of B = 259 GPa. This relationship
is consistent with the previous studies of the effect of the exchange–correlation functional on
the calculated equation of state [4, 6, 18]. The overbinding of the LDA approach results
in overestimated bulk moduli, while gradient-corrected functionals like PBE underbind and
consequently produce too low bulk moduli. The fact that our two results obtained with LDA
and GGA exchange–correlation functionals are so close to the experimental result of Okamoto
et al [1] strongly suggests that the full stiffness tensor measured by those authors represents a
reliable set of material parameters of ZrB2. Note that internal consistency of the present results
is illustrated by the comparison of the bulk modulus values and the linear compressibilities
calculated from the Ci j tensor and from the compression data, table 2. The discrepancy between
the two sets of results is less than 0.5%.

The results of the LCAO study [5] fall essentially between the two sets of the experimental
values for the bulk modulus. The LCAO results fail to reproduce the experimentally observed
anisotropy of the compression of ZrB2. Both experiments, as well as our PBE calculation,
show that the c axis is about 20% more compressible than the a axis, while the results of
Mahmud et al [5] give essentially isotropic compressibility (table 2).

The only other DFT calculation of the compressibility of ZrB2 that we are aware of
has been carried out using the tight binding LMTO method with the LDA description of the
exchange–correlation [17]. This calculation produced a very low bulk modulus of 195 GPa,
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while the cell parameters were overestimated by more than 1%. An underbinding in an LDA
calculation points towards some fundamental technical problems of the method employed
by Vajeeston et al [17]. We have shown above, see tables 1 and 2, that properly converged
calculations confirm the general trend of LDA overbinding and GGA underbinding in the solid
state. In addition, the value of the pressure derivative of the bulk modulus, B ′, is very low
according to [17]. This value is close to 4 for most inorganic materials; in fact, it is often set
to 4 for the purposes of fitting an analytical equation of state to low quality experimental data,
as was the case in the study of Pereira et al [7]. Both present and earlier results agree with
this estimate (table 2), while the TB-LMTO study [17] obtained B ′ between 1 and 2 for 12
transition metal diborides. In our opinion, the underbinding within the LDA approach together
with the unrealistically low values of B ′ make the results for ZrB2 obtained by Vajeeston et al
[17] unreliable.

The coefficients of thermal expansion (CTEs) of ZrB2 have been determined in the
temperature range from room temperature to 1073 K by Okamoto et al [1]. The CTE values
averaged over the temperature range indicate a nearly isotropic expansion of the hexagonal
ZrB2 structure: αa = 6.66 × 10−6 K−1 and αc = 6.93 × 10−6 K−1. The actual dilatometry
data analysed by Okamoto et al [1] are quite noisy, and the error bars on the reported average
values are of the order of 0.3 × 10−6 K−1. In fact, if we consider the temperature dependence
of the reported CTEs, then we find that αa > αc starting from 673 K. This experimentally
observed isotropic behaviour is unusual for a hexagonal crystal, and it justifies the use of the
Andersen–Hoover barostat to carry out molecular dynamics in the NPT ensemble with the
fixed cell shape.

The CTEs are rarely determined from ab initio molecular dynamics calculations, thus
we tested the technique before applying it to ZrB2. The isotropic expansion of a number of
simple substances with cubic symmetry was studied using the conventional cell description
(4 or 8 atoms per FCC cell, 2 atoms per BCC cell). The energy cut-off and Brillouin zone
sampling were chosen to produce lattice parameters that converged to better than 0.0001 Å.
A series of MD runs has been performed for each material at 5–7 temperatures spanning the
temperature range of interest. Each run contained 10 000 steps with a time step of 0.1–0.5 fs.
The comparison of the results obtained with different time steps showed that 0.5 fs is sufficient
for conserving the constant of motion, so this value was used in the subsequent studies of
ZrB2. The cell parameter for a given temperature was determined by simple averaging over
the second half of the MD run. The linear fit of the resultant a(T ) dependence produced the
CTE value as well as the value of the lattice parameter extrapolated to T = 0 K.

The results given in table 3 show that even extremely small cells used in these tests are
capable of producing qualitative and even quantitative agreement with experiment. There is a
substantial scatter of the calculated data, resulting in the statistical uncertainty of the theoretical
CTE of the order of 10%. One expects that the increase of the simulation cell should reduce
this scatter.

One further comment should be made with regard to the comparison of calculated and
measured CTE values (table 3). The CTEs for the investigated compounds are usually
temperature dependent. The variation of CTEs in the range of temperatures we used, 200–
800 K, can be quite large: from 1.5 to 4.0×10−6 K−1 for diamond [21, 22];23 to 33×10−6 K−1

for Al [23]; 4 to 4.8 × 10−6 K−1 for W [24], etc. The quality of the data obtained in the MD
calculations is insufficient to attempt a more sophisticated analysis than the linear fit over
the entire temperature range, and thus the only meaningful comparison is against the average
experimental CTE values.

The values of lattice parameter extrapolated to T = 0 K agree well with the results of the
static geometry optimization (table 3). The discrepancies between the extrapolated and static



2238 V Milman et al

1/B [GPa -1]

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

T
h

er
m

al
 e

xp
an

si
o

n
  [

10
-6

 K
-1

]

0

20

40

60

80

100

Al

Li

Na

Figure 1. Correlation between the linear coefficients of thermal expansion and compressibility for
the materials studied in table 3 (◦—theory, •—experiment [20]). The bulk modulus values are
taken from [25], except for Ge [26] and AlAs [27]. For Al, the experimentally observed temperature
dependence of the CTE is significant and is indicated by a vertical bar. The temperature dependence
of the CTE of diamond and tungsten is comparatively small and corresponds approximately to the
symbol size.

Table 3. Calculated linear coefficients of thermal expansion for cubic crystals (in 10−6 K−1).
Experimental data [20] refer to 300 K. The lattice constants obtained from the extrapolation to
T = 0 K, aext , are compared to the results of a direct geometry optimization, aopt.

Material Theory Experiment aext (Å) aopt (Å)

Si 4.4 4.7 5.396 5.385
Ge 5.8 6.1 5.550 5.553
C (diamond) 4.4 1.2 3.536 3.536
AlAs 6.6 4.2 5.600 5.592
Al 22.5 23.1 3.969 3.957
Li 35.4 46.0 3.428 3.430
Na 86.6 71.0 4.280 4.289
W 6.0 4.5 3.224 3.222

values are due most likely to the limitation of the extrapolation procedure, which assumes
temperature-independent CTEs.

It is instructive to verify how well the calculated and experimental CTE values from table 3
follow the theoretical dependence on other thermodynamical material properties [20]:

α = γ CV /BV , (2)

where γ = CP/CV is the heat capacity ratio, CV is the heat capacity at constant volume, B is
the bulk modulus, V is the volume. The value of γ is typically close to 1 for solids, and CV can
be treated as a constant at elevated temperatures. The unit cell volumes of the materials listed
in table 3 are similar, so one expects an inverse proportionality between the thermal expansion
coefficient and the bulk modulus. This qualitative dependence predicted by equation (2) can
indeed be seen in figure 1: the more compressible materials such as Li and Na possess the
highest CTE. The deviation between the calculated and experimental CTE values is also the



Elasticity and thermal expansion of ZrB2 2239

3.175

3.180

3.185

3.190

3.195

3.200

0 200 400 600 800 1000 1200

1x1x1 cell
2x2x2 cell

La
tti

ce
 p

ar
am

et
er

 (
Å

)

T (K)

ZrB
2

Figure 2. Temperature dependence of the a lattice parameter of ZrB2 calculated using the 3-atom
cell (◦) and the 24-atom cell (�).

highest for the crystals with low bulk modulus. This is partially due to bigger fluctuations that
lead to higher error bars for the calculated CTEs in soft materials.

The values of the lattice parameters extrapolated to T = 0 K agree very well with the
values obtained from geometry optimization. The largest discrepancy is observed for Li,
where one expects vibrational effects to be more important in view of its small atomic mass.
The results overall are encouraging for applications of the Andersen–Hoover barostat to CTE
calculations for isotropic crystals.

A protocol similar to the one described above has been applied for hexagonal ZrB2. The
time step was chosen as 0.5 fs, each run was 10 ps long (20 000 steps) and the last 5 ps
were used to determine the average lattice parameter. We used five different temperatures
from 300 to 1100 K for linear fitting of the a(T ) dependence; see figure 2. We obtained the
CTE of 7.4(5) × 10−6 K−1, in satisfactory agreement with the experimental result [1]. The
extrapolation to T = 0 K produces a = 3.169 Å, in good agreement with the result of direct
geometry optimization (see table 1).

We have verified that the agreement with experiment is not fortuitous by repeating the
calculation for the 2×2×2 supercell containing 24 atoms. These calculations are clearly more
demanding computationally, since the scaling of the plane wave pseudopotential technique
with the number of atoms is of the order of N2 to N3. This scaling implies that the cost of
a calculation on such a supercell should be 100–500 times higher than on the original cell.
In fact, the effect of increasing the cell is made less costly by the reduction of the number of
k-points required for the Brillouin zone sampling. This number is reduced by a factor of ∼6,
and the overall observed increase in the computational time is of the order of only 50, making
the calculations feasible. We have halved the number of steps in the supercell calculations so
that the length of the runs was now 5 ps.

The thermal expansion calculated for the 2×2×2 supercell (figure 2) is described with the
CTE of 7.7(3)×10−6 K−1, thus confirming that the 3-atom cell generates sufficiently accurate
thermal expansion data. The lattice constant extrapolated to 0 K is slightly different in these
calculations (a = 3.171 Å) compared to the small cell results; however, the discrepancy is
well within the expected accuracy limits. The statistical error in the calculated CTE is slightly



2240 V Milman et al

Figure 3. Comparison of the time evolution of the ZrB2 cell parameter, a, in the MD calculations
at T = 1100 K using the 3-atom cell (left panel) and the 24-atom cell (right panel). The cell
parameter is given relative to the average value of the production run. Only the last 5 ps of each
simulation are shown.

lower in the supercell calculation as one expects intuitively. This effect is due partly to a
better quality of the linear fit (see figure 2), and partly to the reduced standard deviation of the
time-averaged cell parameter in each individual MD run. The latter effect is demonstrated by
figure 3, which shows that the standard deviation is reduced by a factor of 2–3 when we use
the 24-atom supercell.

4. Conclusions

We have reported density functional results for the elastic properties and thermal expansion
coefficients of a promising technological material ZrB2. The calculated stiffness is in good
agreement with the experimental values obtained using the resonance ultrasonic technique [1].
These results indicate that the conclusions of the high-pressure study by Pereira et al [7] are
unreliable and need further examination.

We showed that the NPT dynamics calculation, even for extremely small cells, is capable
of describing thermal expansion coefficients.
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